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J. Phys. A: Math. Gen. 18 (1985) 1085-1091. Printed in Great Britain 

Separation of coupled systems of differential equations by 
D arboux transformations 

Mayer Humi 
Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 
01609, USA 

Received 3 October 1984 

Abstract. We show that certain classes of coupled Schrodinger equations in one dimension 
which appear in various physical applications can be uncoupled by the application of an 
appropriate Darboux transformation. 

1. Introduction 

Coupled systems of Schrodinger equations 

appear in various physical applications (Mott and Massey 1965, Adamovfi et a1 1984, 
Lane and Liu 1964, Lane 1980). When the coupling terms in these equations are small 
it is relatively easy to obtain satisfactory approximate solutions for such systems but 
these methods are inadequate in the strong coupling case. In an attempt to resolve 
such problems Cao (1981, 1982) sought to decouple systems of two such equations in 
one dimension by a transformation of the form 

4i= R,j$,. 
j =  I 

It turns out however that the class of coupled systems which can be treated by such 
a transformation is rather limited. It is therefore our intention in this paper to show 
that larger classes of coupled systems can be separated by the use of a proper extension 
of Darboux transformations to systems of differential equations. 

Historically, Darboux introduced (Darboux 1882) these transformations (which 
are a prototype of Lie-Backlund transformations) as an iterative procedure for the 
construction of potentials u ( x )  for which all the eigenfunctions of 

(1.3) 

(and similar equations) are explicitly known. Since then Darboux transformations 
were used in various mathematical (Crum 1955) and physical contexts (Miura 1976, 
Zheng 1984). Furthermore Chudnovsky (1978) and Chudnovsky and Chudnovsky 
(1979) extended these transformations to evolution equations of the form 

4" = ( U ( x ) + A ) 4 

a $ / a t  = L$ ( 1.4) 
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where 

L =  (d/dX)" + u"-2(d/dx)"-2+. . . . 

The plan of the paper is as follows. 
In 2 we review and generalise Darboux transformations to systems of coupled 

equations. In § 3 we find the conditions under which a system of two coupled 
Schrodinger equations can be separated by a Darboux transformation and finally in 
§ 4 we consider a few examples. 

2. Darboux transformations 

Historically Darboux transformations were defined for a single differential equation 
as follows. 

Deftnition 1. Given the equation 

4"= ( # ( x ) + A ) 4  

we say that the transformation 

CL = A(x)4  + B(x)4 '  (2.2) 

is a Darboux transformation if 4 satisfies a differential equation of the form 

$" = ( U(X) + A )I). (2.3) 

In what follows, however, we consider only the case B = 1. 
To find under which constraints on A the transformation (2.2) represents a Darboux 

transformation we substitute (2.2) in (2.3) using (2.1) and equate the coefficients of 
4, 4'  to zero separately. We obtain 

A"+ U'+ A( U - U )  = 0 

2A'+ U - U  = O .  

Eliminating (U - U) between these equations and integrating yields 

A ' - A * + u =  - v  (2.6) 

Equation (2.6) is a Ricatti equation which can be linearised by the standard 
where v is an integration constant. 

transformation A = - ['/[ which leads to 

[ " = ( u ( x ) +  v)[ (2.7) 

Thus [ is an eigenfunction of the original (2.1) with A = U. From (2.5) we now infer that 

(2.8) 

i.e. a Darboux transformation changes the potential function u(x) by Au = -2(ln 5)'' 
where 5 is an arbitrary eigenfunction of (2.1). 

In complete analogy to the one-dimensional case we now define Darboux transfor- 
mations for a system of second-order equations. 

U = U - 2(ln 5)" 



Separation of coupled systems of differential equations 1087 

(2.9) 

(2.10) 

is a Darboux transformation with respect to (2.9) if 

I,V' = F (  x )  t+b 

where 

ul(x), f i , 2 ( ~ ) 7 .  . . , f i ,n(x) 
... ) + A I .  i fn,l(x), . . . ,fn,n-I(x), un(x) 

F ( x )  = 

(2.12) 

(2.13) 

Substituting (2.1 1 )  in (2.12) and using (2.9) it is easy to see that (2.1 1 )  is a Darboux 
transformation if and only if A, B satisfy the following system of equations: 

A " + 2 B t D + A D +  BD'= FA (2.14) 

2A'+ B D + B " =  FB. (2.15) 

Thus for any given D, F this system represents a set of 2n2 linear coupled equations 
in 2 n 2  unknowns which can be solved analytically only in some special situations. It 
follows then that from a practical point of view it is necessary to simplify and reduce 
the number of equations in this system by introducing some ansatz on A and B. We 
consider some cases. 

Case 1. B = 0. The system (2.14)-(2.15) reduces to 

A"+ A D  = FA, 2A' = 0. 

Hence A is a constant coefficients matrix and 

F = ADA-' 

(2.16) 

i.e. D and F are similar matrices. This is exactly the result obtained by Cao (1981). 

Case 2. A = B. Under this condition (2.14)-(2.15) form an overdetermined system for 
the entries of A and to restore the balance between the number of equations and 
unknowns we must consider the entries in F as unknowns. It follows then that 

(2.17) 2A'( Z - D) = AD' 

and 

F = ( 2 A ' + A D +  A")A-'. (2.18) 

Using (2.17), a little algebra then yields 

F = A { D + D ' ( Z - D ) - ' + ~ 3 D ' ( Z - D ) - ' D ' + D " ] ( Z -  D)-'}A-'. (2.19) 
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We infer then that 
F. If F is required 
to decouple) (2.19) 

A is completely determined by D and this determines the matrix 
to be of a special form e.g. diagonal (for the new equations in CC, 
is the proper constraint on D (and hence A) for this to happen. 

Case 3. B = I. The system (2.14)-(2.15) reduces to 

A”+ D’+ A D  = FA 

2A’+ D = F. 
Hence 

A”-2A‘A+[A, D]+ D’=O 

(2.20) 

(2.21) 

(2.22) 

where [A, D ]  = A D  - DA. Note that (2.22) is non-linear in A. Moreover the same 
considerations as in the previous case apply to F. 

Case 4. A = I. The derived equation for B in this case is 

B”- 2B’D + [ B, D] = BD’B 

furthermore 

F = (BD)’+ D + B’D. 

(2.23) 

(2.24) 

3. Decoupling of systems of two equations 

In this section we investigate the use of Darboux transformation with B = 1 to decouple 
systems of two second-order equations where the coupling terms are symmetric. Thus 
we consider systems where 

and require F to be of the form 

(3.2) 

From (2.21) we easily obtain the following equations for the entries aij of A ;  

2 ~ ’ , 2  = 2 ~ ; , =  - d (3.3) 

2 a ; ,  + u , ( x )  = UI(X) (3.4) 

2a;,+ uz(x) = u , ( x ) .  (3.5) 
Hence we deduce that 

c = a , ,  = a,, = -- I d ( x )  dx. (3.6) 

Substituting these results in (2.20) and integrating whenever possible we obtain the 
following overdetermined system of four equations for a, , ,  a,, 

a ; , - a : , =  - u , + c 2  (3.7) 

a;,-a:,= - u 2 + c 2  (3.8) 
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1 ,  I d  + a , , d  -2a;,c = c( U ,  - U,) 

zd + a22d - 2a;,c = c( u2 - U ] ) .  ‘ I  

(3.9) 

(3.10) 

Since (3.9), (3.10) are linear and uncoupled we can solve them to evaluate a , , ,  a22 in 
terms of U ,  - u2 and d. We obtain 

a , ,  = (1/2c)(id + a + I)  

a,, = (1/2c)( id  - a  - I)  

where cy is an integration constant and 

I =  J x  ~ ( t ) [ u , ( t ) -  u , ( t ) ]  dt. 

(3.1 1) 

(3.12) 

(3.13) 

To derive the constraints that have to be imposed on uI ,  U, and d for this solution to 
be consistent with (3.7), (3.8) we subtract (3.8) from (3.7) and use (3.1 l ) ,  (3.12) to obtain, 

(3.14) ( a  I , - az2)’ - (d /2c ) (  a , , - az2) = U, - U,.  

This equation however is satisfied identically by the solutions (3.1 l ) ,  (3.12) and 
therefore imposes no restrictions on d, U , ,  U,. We infer then that the only constraint 
that these functions have to satisfy is obtained by adding (3.7)-(3.8) which yields 

U ,  + u,=2c2-  ( d / 2 ~ ) ’ + : ( d / 2 ~ ) * + (  1/2c2)(a  + I)’. (3.15) 

To restate this result we observe that (3.15) implies that we can choose d, U ,  - u2 as 
arbitrary functions and then use (3.15) to compute the corresponding U ,  + U, for which 
the resulting system of equations with U ’ ,  u2, d can be decoupled by a Darboux 
transformation. 

Finally we also note that when a system (3.1) can be decoupled and the solutions 
4 for the resulting system are known then 4 are given explicitly by 

4 =[A-’(A’+ D )  + A]-’( + - A-’+’). (3.16) 

(To derive this equation we assumed B =  1 and used (2.11), (2.9).) 

4. Examples 

The purpose of this section is to present two examples. The first of these is a 
straightforward application of the results derived in § 3. In the second example we 
examine the application of our results to a system of linearly coupled diffusion 
equations. 

Example 1. If we choose 

c = a x k ,  u I  - u2 = bx‘ 

(note that the choice of c is equivalent to that of d )  then using (3.15) we obtain 

2x2 k + l + l  
k ( k - 1 )  1 

u I  + U, = 2a2xZk +- (4.1) 
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especially if we set a = O  this simplifies to 

k( k - 1 )  b2X2+,' 
U1 + U2 = 2a2x2k +- + 

2x2 2 ( k + l + l ) '  

The corresponding entries which decouple this system are 

a , ,  =- 

a 

(4.2) 

(4.3) 

(4.4) 

and 
k 

a12= a,, = ax . 
Furthermore the potentials u,(x),  u 2 ( x )  of the decoupled system are easy to compute 
using (3.4), (3.5). 

Example 2. In a recent paper (Zulchner and Ames 1983) similarity solutions to a 
system of coupled diffusion equations were considered ; 

4, = +xx +f( fp ), fp E R". (4.5) 

In this example we discuss a special case of this system, namely 

4, = fpxx + D(x)fp (4.6) 

and its decoupling by a Darboux transformation 

Substituting (4.7) in (4.8) and using (4.5) we obtain 

(A,, - A D  - BD, + FA)+ + (2A, + B,, - B D  + FB)@, + ~B,u,, = O .  (4.9) 

Equating each coefficient of U, U,, U,, to zero yields: 

B, = 0 

A,, - A D  - BD, + FA = 0 

2A,+BX,-BD+FB=0.  

(4.10) 

(4.11) 

(4.12) 

Hence B is a matrix with constant entries and if we set B = Z then (4.1 1)-(4.12) reduce 
to 

A,,-AD-D,= -FA (4.13) 

2 A , - D = - F .  (4.14) 

However (4.13)-(4.14) are exactly the same as (2.20)-(2.21) under the formal substitu- 
tion D += - D, F += - F. I t  follows then that we can decouple the system (4.2) under 
the same conditions that were derived earlier in 0 3. 
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